Exam. Code : 103202 Subject Code : 1025

B.A./B.Sc. $2^{\text {nd }}$ Semester
 MATHEMATICS
 Paper-I
 (Calculus and Differential Equations)

Time Allowed-Three Hours] [Maximum Marks-50
Note :- Paper consists of four Sections A, B, C and D. Each section contains two questions. Students are required to attempt five questions, selecting at least one question from each section. The fifth question may be attempted from any section.

SECTION-A

1. (a) Find the intervals in which the curve $\mathrm{y}=(\cos \mathrm{x}+\sin \mathrm{x}) \mathrm{e}^{\mathrm{x}}$ is concave upwards or concave downwards in $(0,2 \pi)$. Also find the points of inflexsion.
(b) Find the centre of curvature at any point (x, y) of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$. Also find the evolute of $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$.
2. (a) Find all the asymptotes of the curve $(x-y+1)(x-y-2)(x+y)=8 x-1$.
(b) Find the position and nature of the double points on the curve $y^{2}=(x-1)(x-2)^{2} . \quad 5+5=10$

2539(2519)/EBH-599 1
(Contd.)

SECTION-B

3. (a) Integrate $\int \sinh x \sinh 2 x \sinh 3 x d x$.
(b) Find the area of the region bounded by the curves $y^{2}=4 a(x+a), y^{2}=4 b(b-x)$ where $a>0$, $\mathrm{b}>0$.
$5+5=10$
4. (a) If $I_{m, n}=\int \sin ^{m} x \cos ^{n} x d x$ then prove that $I_{m, n}=\frac{\sin ^{m+1} x \cos ^{n+1} x}{m+1}+\frac{m+n+2}{m+1} I_{m+2, n}$. Hence evaluate $\int \frac{d x}{\sin ^{4} x \cos ^{2} x}$.
(b) Find the length of a loop of the curve

$$
9 a y^{2}=x(x-3 a)^{2}, a>0 \quad 5+5=10
$$

SECTION-C

5. (a) Find the necessary and sufficient condition that the equation $\mathrm{Mdx}+\mathrm{Ndy}=0$ may be exact where M, N are functions of x and y with the condition that $\mathrm{M}, \mathrm{N}, \frac{\partial \mathrm{M}}{\partial \mathrm{y}}, \frac{\partial \mathrm{N}}{\partial \mathrm{x}}$ are continuous function of x and y.
(b) Find the orthogonal trajectories of the system of circles touching a given straight line at a given point.
$5+5=10$

2539(2519)/EBH-599 2
(Contd.)
6. (a) Solve the differential equation
$\left(8 p^{3}-27\right) x-12 p^{2} y=0$ where $p=\frac{d y}{d x}$ and investigate whether a singular solution exists.
(b) Solve $\frac{2 y}{x}-p=f\left(\frac{p}{x}-\frac{y}{x^{2}}\right)$ where $p=\frac{d y}{d x}$.
$5+5=10$

SECTION-D

7. (a) Solve the differential equation
$\left(D^{4}+2 D^{2}+1\right) y=x^{2} \cos x$ where $D=\frac{d}{d x}$.
(b) Solve the differential equation $\left(D^{2}+3 D+2\right) y=\sin \left(e^{x}\right)$ by the method of variation of parameters.
$5+5=10$
8. (a) Solve in series the differential equation
$x^{2} \frac{d^{2} y}{d x^{2}}+x \frac{d y}{d x}+\left(x^{2}-n^{2}\right) y=0$ where $2 n$ is a non integer.
(b) Solve :

$$
\sqrt{x} \frac{d^{2} y}{d x^{2}}+2 x \frac{d y}{d x}+3 y=x, x>0 . \quad 5+5=10
$$

